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We have used the molecular virial theorem together with the fact that the potential energy for a 
series of isoelectronic molecules is a homogeneous function of the nuclear charges to show that the 
electronic energies of isoelectronic molecules, e.g. H~, He~ -3, Li~ -5 ... .  are related in a simple way. 
That is, if the electronic energy for H~ is a known function of R, i.e., g(R), then the energies for the 
other members of the sequence are Z 2 g(ZR) where Z is the nuclear charge. The method is extended 
to heteronuclear as well as multi-electronic molecules. 

Unter Berticksichtigung des molekularen Virialsatzes und der Tatsache, dab die potentielle 
Energie fiir eine Reihe von iso-elektronischen Molekiilen eine homogene Funktion der Kernladungen 
ist, liigt sich ein einfacher Zusammenhang zwischen den Elektronenenergien iso-elektronischer Mole- 

+ +3 "+5 kiile wie z. B. H2, He 2 , L12 ... .  zeigen. Ist die Elektronenenergie fiir H + z. B. eine bekannte Funktion 
g(R), dann betragen die Energien der iibrigen Mitglieder einer solchen iso-elektronischen Folge 
Z 2. g(ZR), wobei Z die Kernladungszahl ist. Die Methode wird sowohl auf heteronukleare als auch 
auf Mehrelektronenmolekiile ausgedehnt. 

En utilisant le th6or6me virial mol6culaire et le fait que l'6nergie potentielle pour une s6rie iso- 
61ectronique des mol6cules est une fonction homog~ne de charge nucl6aire on montre une relation 
simple entre les ~nergies ~lectroniques des molecules H +, He~ a, Li +5 . . . . .  Quand l'~nergie 61ectronique 
pour H + est une fonction connue g(R) les 6nergies des membres de la s6rie se donnent h Z2g(ZR) ou Z 
est la charge nucl6aire. La m6thode est ~tendue aux mol6cules h6t~ronucl6aires et aux molecules 
multi61ectroniques. 

Recen t ly  the re  has  b e e n  r e n e w e d  in te res t  in  the  m o l e c u l a r  v i r ia l  t h e o r e m  [1]  
as a p o i n t  of  d e p a r t u r e  for  s tud ies  o n  e lec t ron ic  energy  curves  a n d  force cons t an t s .  
I n  this  c o m m u n i c a t i o n  we wish  to  s h o w  t h a t  the  v i r ia l  t h e o r e m  can  be  deve loped  
a s tep fu r the r  for i soe lec t ron ic  molecu les .  

Because  the  p o t e n t i a l  e n e r g y  of  a m o l e c u l e  is a h o m o g e n e o u s  f u n c t i o n  of  its 
p o s i t i o n  var iab les ,  of  n u c l e a r  charges ,  etc. it  is poss ib le  to  show tha t  the  e lec t ron ic  
energies  of  a series i soe l ec t ron ic  mo lecu l e s  are  re la ted  in  a s imple  way.  

W e  beg in  by  reca l l ing  a r i g o r o u s  resu l t  o f  m o l e c u l a r  q u a n t u m  m e c h a n i c s  
the  v i r t ua l  t h e o r e m  [2]  

Q, .  V~E(Q) + 2 E ( Q ) -  F = 0 .  (1) 

In  this  e q u a t i o n  (Q) r ep re sen t s  the  set of  n u c l e a r  c o o r d i n a t e s  a n d  E is the  e lec t ron ic  
energy  m i n u s  n u c l e a r  r epu l s ion .  T h e  in t eg ra l  P is the  p o t e n t i a l  ene rgy  of  the  
m o l e c u l e  a v e r a g e d  wi th  the  e lec t ron ic  wave  f u n c t i o n  ~0. W e  have  

W e (p(Q, q) = (T  e + V)'~o(Q, q) = E(Q) (p (Q, q). (2) 

C o n s i d e r  first the  case of  a o n e - e l e c t r o n  h e t e r o n u c l e a r  d i a t o m i c  molecule .  The  

p o t e n t i a l  energy  a p p e a r i n g  in  
Z Z '  

V= (~ol- I~o), (3) 
[r --  R/2[ [r + R/21 
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is a homogeneous function of degree (+  1) in the nuclear charges Z, Z' therefore 
Eq. (3) can be rewritten as 

0V Z' dV V= (q)] Z ~ -  + ~ 7  ]cp>, (4) 

where we have used Euler's theorem for homogeneous functions. The integrals 
in Eq. (4) can now be related to derivatives of the electronic energy with respect 
to the nuclear charges by the Hellmann-Feynman [3] theorem, i.e. 

d~e d~ 
( ~ o l - T 2 - I ~ o >  - d,~ ' (5)  

where 2 is a parameter contained in Jge" Combining Eqs. (1), (4) and (5) we obtain 

dE + Z dE , dE 
- R ~ -  ~ + Z  ~ = 2 E .  (6) 

This equation is an example of a first-order partial differential equation the theory 
of which is well developed I-4, 5]. It is easily verified that the general solution 
of Eq. (6) may be written as 

E = Z Z '  f ( Z R ,  Z '  R ) ,  (7) 

where f is any arbitrary function of the variables Z R  and Z 'R .  It is clear that E 
is far from being determined by the differential equation alone. Only the applica- 
tion of boundary conditions will pick out a unique function from the infinity of 
solutions generated by Eq. (7). At this point, however, we note that the general 
solution alone will suffice to demonstrate that the energies of H +, HHe + 2, HLi + 3, 
He~ 3, etc. are all special cases of Eq. (7). 

At first glance one might think that given Eq. (7) together with suitable boundary 
conditions it would be possible to obtain the electronic energy without solving the 
molecular Schr6dinger equation. We shall see that this is, not entirely true how- 
ever. 

The nature of the boundary conditions which are needed to make E unique 
(the Cauchy problem) is complicated. Therefore, we will treat the homonuclear 
case first. Here the electronic energy expression has the form 

E = Z ~ g ( Z R ) ,  (8) 

where g is arbitrary. It can be shown 1-4] that a unique solution is obtained if E 
is specified along some curve in the R, Z-plane. However, not just any curve will do. 
Consider for example the case in which we specify the energy to be - 2 Z 2 / n  2 
(the united atom energy) along the curve R = 0. This choice of boundary conditions 
determines E only to the extent that g (0) = - 2In 2. There are still an infinite number 
of solutions possible. Alternately if we set E = 0 along Z = 0 we see that E isn't 
determined at all. Both of these cases are contained in the statement that the solu- 
tion cannot be made unique by specifying E along the characteristic base curve 1-4] 
ZR = C where C is any constant. If now we consider the case in which E is prescribed 
along a curve which cuts across the characteristic base curves, say Z = 1, then a 
unique solution will result. That  is to say if E = U(R) (U is a known function) 
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along Z = 1, then the solution to the problem is exactly 

E = Z 2 U(ZR) .  (9) 

From this we conclude that if the Schr6dinger equation can be solved for one 
homonuclear  molecule the electronic energy for any isoelectronic one can be 
obtained from Eq. (9). 

Returning to the heteronuclear molecule we see that it can be treated similarly. 
In particular, if one has obtained a solution of the Schr/Sdinger equation for the 
case where Z = 1 with Z' and R arbitrary that is E = Z '  U(R, Z 'R )  the energy for 
the general situation is simply 

e = Z Z '  U(ZR,  Z 'R) .  (10) 

In order to demonstrate  the method for multi-electron systems consider a 
homonuclear  two-electron diatomic molecule. The potential energy for the mole- 
cule contains the nuclear charge Z and we will introduce the artificial effective 
charge z so that 

V =  q~l I r i -R /2 l  Irl +R/21- + I �9 (11) 
i = 1  /'12 

Because of the formal similarity of Eqs. (i i) and (3) the electronic energy Eqs. (6) 
and (7) have the same form; however, the general expression for the energy can be 
written 

E = Z 2 f ( Z R ,  zR) (12) 

where f is arbitrary. Note  that if z i{ set equal to unity we are describing the iso- 
electronic sequence H2, He~ 2 etc. As before, if one could solve the Schrbdinger 
equation for the case Z = 1 with z and R arbitrary, all of the heteronuclear energy 
curves would become available. Although this procedure may be difficult to 
achieve [6] in practice the relationship among the various energies none the 
less exists. 
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