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Isoelectronic Molecules
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We have used the molecular virial theorem together with the fact that the potential energy for a
series of isoelectronic molecules is a homogeneous function of the nuclear charges to show that the
electronic energies of isoelectronic molecules, e.g. H; , He3 3, Lij 5, ... are related in a simple way.
That is, if the electronic energy for H; is a known function of R, i.e., g(R), then the energies for the
other members of the sequence are Z2g(ZR) where Z is the nuclear charge. The method is extended
to heteronuclear as well as multi-electronic molecules.

Unter Beriicksichtigung des molekularen Virialsatzes und der Tatsache, daf3 die potentielle
Energie fiir eine Reihe von iso-elektronischen Molekiilen eine homogene Funktion der Kernladungen
ist, 14Bt sich ein einfacher Zusammenhang zwischen den Elektronenenergien iso-elektronischer Mole-
kiile wie z. B. Hi, HeZ3, Lif*, ... zeigen. Ist die Elektronenenergie fiir H; z. B. eine bekannte Funktion
g(R), dann betragen die Energien der iibrigen Mitglieder einer solchen iso-elektronischen Folge
Z% - g(ZR), wobei Z die Kernladungszahl ist. Die Methode wird sowohl auf heteronukleare als auch
auf Mehrelektronenmolekiile ausgedehnt.

En utilisant le théoréme virial moléculaire et le fait que énergie potentielle pour une série iso-
électronique des molécules est une fonction homogéne de charge nucléaire on montre une relation
' simple entre les énergies électroniques des molécules H, He;3, Li,?, ... . Quand I'énergie électronique
pour Hj est une fonction connue g(R) les énergies des membres de la série se donnent a4 Z2g(ZR) ou Z
est la charge nucléaire. La méthode est étendue aux molécules hétéronucléaires et aux molécules
multiélectroniques.

Recently there has been renewed interest in the molecular virial theorem [1]
as a point of departure for studies on electronic energy curves and force constants.
In this communication we wish to show that the virial theorem can be developed
a step further for isoelectronic molecules.

Because the potential energy of a molecule is a homogeneous function of its
position variables, of nuclear charges, etc. it is possible to show that the electronic
energies of a series isoelectronic molecules are related in a simple way.

We begin by recalling a rigorous result of molecular quantum mechanics
the virtual theorem [2]

Y 0. LE@+2E(Q~V=0. 1)

In this equation (Q) represents the set of nuclear coordinates and E is the electronic
energy minus nuclear repulsion. The integral V is the potential energy of the
molecule averaged with the electronic wave function ¢. We have

H,0Q,9)=(T,+V)o(Q,9)=EQ) ¢ (2. 9) . ()

Consider first the case of a one-electron heteronuclear diatomic molecule. The
potential energy appearing in
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is a homogeneous function of degree (+ 1) in the nuclear charges Z, Z’ therefore
Eq. (3) can be rewritten as
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where we have used Euler’s theorem for homogeneous functions. The integrals
in Eq. (4) can now be related to derivatives of the electronic energy with respect
to the nuclear charges by the Hellmann-Feynman [3] theorem, i.e.
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where 4 is a parameter contained in J,. Combining Egs. (1), (4) and (5) we obtain
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This equation is an example of a first-order partial differential equation the theory
of which is well developed [4, 5]. It is easily verified that the general solution
of Eq. (6) may be written as

E=ZZ f(ZR,Z'R), 7

where f is any arbitrary function of the variables ZR and Z’R. 1t is clear that E
is far from being determined by the differential equation alone. Only the applica-
tion of boundary conditions will pick out a unique function from the infinity of
solutions generated by Eq. (7). At this point, however, we note that the general
solution alone will suffice to demonstrate that the energies of H;, HHe*?, HLi*3,
He?Z 3, etc. are all special cases of Eq. (7).

At first glance one might think that given Eq. (7) together with suitable boundary
conditions it would be possible to obtain the electronic energy without solving the
molecular Schrodinger equation. We shall see that this is not entirely true how-
ever.

The nature of the boundary conditions which are needed to make E unique
(the Cauchy problem) is complicated. Therefore, we will treat the homonuclear
case first. Here the electronic energy expression has the form

E=Z?g(ZR), ®)

where g is arbitrary. It can be shown [4] that a unique solution is obtained if E
is specified along some curve in thé R, Z-plane. However, not just any curve will do.
Consider for example the case in which we specify the energy to be —2Z%/n?
(the united atom energy) along the curve R = 0. This choice of boundary conditions
determines E only to the extent that g(0) = —2/n?. There are still an infinite number
of solutions possible. Alternately if we set E=0 along Z =0 we see that E isn’t
determined at all. Both of these cases are contained in the statement that the solu-
tion cannot be made unique by specifying E along the characteristic base curve [4]
ZR = Cwhere Cis any constant. Ifnow we consider the casein which E is prescribed
along a curve which cuts across the characteristic base curves, say Z=1, then a
unique solution will result. That is to say if E=U(R) (U is a known function)
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along Z =1, then the solution to the problem is exactly
E=Z*U(ZR). 9

From this we conclude that if the Schrédinger equation can be solved for one
homonuclear molecule the electronic energy for any isoelectronic one can be
obtained from Eq. (9).

Returning to the heteronuclear molecule we see that it can be treated similarly.
In particular, if one has obtained a solution of the Schridinger equation for the
case where Z =1 with Z’ and R arbitrary that is E=Z' U(R, Z'R) the energy for
the general situation is simply

E=ZZ U(ZR,Z'R). (10)

In order to demonstrate the method for multi-electron systems consider a
homonuclear two-electron diatomic molecule. The potential energy for the mole-
cule contains the nuclear charge Z and we will introduce the artificial effective
charge z so that

3 2 Z Z z
V=<"" Zl{_ P |ri+R/2|}+E'¢>' "

Because of the formal similarity of Egs. (11) and (3) the electronic energy Egs. (6)
and (7) have the same form ; however, the general expression for the energy can be
written

E=2Z%f(ZR,zR) (12)

where f is arbitrary. Note that if z is set equal to unity we are describing the iso-
electronic sequence H,, Hel? etc. As before, if one could solve the Schrodinger
equation for the case Z = 1 with z and R arbitrary, all of the heteronuclear energy
curves would become available. Although this procedure may be difficult to
achieve [6] in practice the relationship among the various energies none the
less exists. :
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